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H I E R A R C H Y  OF S T R E N G T H  C R I T E R I A  OF S T R U C T U R E D  B R I T T L E  M E D I A .  

S A T E L L I T E  I N I T I A T I O N  O F  M I C R O C R A C K S  

V. M.  K o r n e v  UDC 539.375 

The quasi-static growth of plane cracks in media with a regular structure is studied. The 
structures characterized by one linear dimension are considered. Consistent discrete-integral 
strength criteria for normal-rupture cracks for each structure are proposed. For three struc- 
tures, the critical stress-intensity factor and the critical lengths of the normal-rupture cracks 
are estimated. For these critical parameters, a limiting passage is possible in the relations ob- 
tained where the stress-intensity factor and the crack lengths tend to zero (the classical relations 
do not admit this limiting passage). Modifications of the criteria proposed make it possible to 
describe the satellite initiation of a microcrack at tile macrocrack tip if monocrystalline grains 
of the material are arranged in a special way in the vicinity of tile macrocrack tip. 

I N T R O D U C T I O N  

In recent years, considerable attention has been given to strength and fracture analyses that  take into 
account the real structure of the material from which a construction is made. Neuber [1] suggested that  
the failure in the presence of stress concentrations can be stated only after averaging the stresses over the 
material grain surface and comparing the averaged stresses with the strength characteristics of a structured 
solid. Novozhilov [2] introduced, in addition to the averaging, both necessary and sufficient criteria of brittle 
strength for crystalline solids. Following Novozhilov, Kornev et al. [3, 4] studied the sufficient criterion of 
brittle s t rength for real potentials of interatomic interaction for tim case where there are vacancies near the 
crack tip. Kornev [5] proposed discrete-integral criteria for three types of cracks in which the averaging limits 
depend on the dimensions and location of defects in the vicinity of the crack tip. According to Novozhilov's 
ternfinology, the criteria proposed in [5] (in the absence of defects in the material) become necessary criteria. 
The characteristic linear dimensions of solids considered by Neuber [1], Novozhilov [2], and Kornev et al. [3-5] 
differ by several orders since grainy metals were studied in [1], whereas crystalline metals were considered 
in [2-5]. Mikhailov [6, 7] substantiated the averaging procedure in the Neuber-Novozhilov criteria. Studies 
[8-10] deal with strength of cracked porous bodies of regular structure, where the macroporosity of this 
structure is described by the characteristic linear dimension. Generally, there is no stress singularity at the 
apices of blunt  cracks [1, 3, 8-10]. The refinement of Novozhilov's necessary and sufficient criteria of brittle 
strength for crystalline solids allows a qualitative description of the Rebinder effect [11-13]. 

To formulate strength criteria for both blunt and sharp cracks in continuous structured media, it is 
natural to use the Neuber-Novozhilov approach. 
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Fig. 1 

1. S T R E S S E S  I N  T H E  V I C I N I T Y  O F  C R A C K  T I P S  

1.1. M e c h a n i c a l  M o d e l s  for  N o r m a l - R u p t u r e  Cracks .  We study the quasi-static growth of 
plane cracks in media with regular structures, each of them being characterized by one linear dimension. The 
linear dimensions for crystalline structures and massive building structures can range from 10 -7 to 102 cm in 
order of magnitude.  Two neighboring structures do not affect significantly each other when their dimensions 
differ by two orders. In view of the restrictions mentioned above, no more than five consistent criteria are 
possible in the considered range of linear dinmnsions. Let a cracked solid contain a hierarchy of regular 
structures (i ~ is the total number of the structures) such that  their linear dimensions ri (i = 1, 2 . . . . .  i ~ are 
ordered as ri ~ ri+l and each linear dimension ri differs from the next one ri+l by two orders or more. In 
[1-8], some discrete integral (necessary) strength criteria were proposed for the normal-rupture cracks for 
various structures. It should be noted tha t  the classical approach, where only stress-intensity factors (SIF) 

i(~i) in each structure are taken into account, is inapplicable here since for some structures the stress field 

can contain no singularity, i.e., I('~ i') = O, i* = 
concept of theoretical strength of the material 
crystalline solids (see [14]). 

In each structure, only plane rectilinear 
linear fronts are parallel, i.e., a plane problem 
discrete-integral criteria of brittle strength for 

7~iri 

1, 2 , . . . ,  i ~ Moreover, certain difficulties arise in defining the 
of each structure. We note that this is the ideal strength ibr 

cracks are considered, whose planes coincide and whose recti- 
of the theory of elasticity is studied. We propose a family of 
normal-rupture cracks 

1 / a( i ) (x i ,O)dx  i <<. a(i) (i =- 1 , 2 , . . . , i  ~ where i ~ ~ 5), (1.1) 
kiri 

0 

which are consistent for each structure. Here a(yi) are the normal stresses at the crack continuations (they 
can contain singularities or not), Oixiyi are  the Cartesian coordinate systems oriented relative to the right 
parts of the cracks of different scale [the origins for the cracks of different scales can differ; in this case, the 
limits of integration in (1.1) are changed accordingly], ri is the characteristic linear dimension of a particular 
structure, ni and ki are integers (ni >/ ki), ki is the number of active bonds acting at the crack tip of the 

i th  structure, nir i  are the intervals of averaging, and a!/) are the theoretical strengths of the material of a 
particular s t ructure (for crystalline solids, this is the ideal strength of perfect crystals [14]). 

The limits of stress averaging in the discrete-integral criteria (1.1) depend on the presence, dimension, 
and location of microdefects in the i th  structure in the vicinity of tile crack tip (hi /> ki). The magnitudes 
of these averaged stresses [1, 2] must not exceed tile theoretical breaking strength of an ideal material of the 
i th structure. The quantities k i /n i  characterize damage of the ith material at the crack continuation. In the 
specific implementation [15, 16] of the nonlocal strength criterion [6, 7], the damage of the material is ignored 
(see [15, relations (5)] and [16, relations (12)]). 
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The stress fields a (i) at the crack continuations can be calculated after the corresponding linear prob- 
lems of the theory of elasticity for specified loads (i ~ is the total number of these problems) are solved. The 
proposed approach accounting for the hierarchy of structures is illustrated in Fig. i (the emblem of the 5th 
International Conference on Fundamentals of Fracture) ,  in which 1 is the macrolevel (standard specimen), 2 
is the mesolevel (regular graininess of material), and 3 is the microlevel (particular atomic structure in the 

vicinity of the crack tip). In the simplest cases, exhaust ive information on the stress fields a (/) at the crack 

continuation can be obtained for an arbitrary i so tha t  a (i) = F (a~ ) ) ,  where F is a certain function and 

cr~ ) are the stresses acting in the normal direction to the crack plane and specified at infinity or on a certain 
contour of the body for tile first structure. The solution for stresses at the continuation of sharp cracks y = 0 
can be expressed in terms of SIFs K~ i) to give 

K~ i) 

(7~i)(xi, O) ~-- ~(i) _~_ (27rXi) 1/2 (i = 1, 2 . . . .  , iO). (1.2) 

In (1.2), only the leading terms that  characterize the stressed state near the crack tip are written, the second 

term having an integrable singularity. Relation (1.2) corresponds to the origin located at the crack tip. A 
smooth component of the solution in (1.2) makes it possible to describe the initiation of cracks at any step. 

We now consider an approximate method of constructing a (i) for porous media with cracks (notches), 
where i ~176 is the number of porous structures (i ~176 ~ i~ Let there be a porous medium for i = 1, i.e., for 
the first structure. At the first step, we construct a solution for the macrostructure  i = 1 for an internal or 
edge crack by using the known stresses a ~  ) acting in the normal direction to the crack plane. As a result, 
we obtain the stress field near the tip of a blunt crack. The form of the solution for the stresses cr (1) at the 
continuation of the bhmt crack with the curvature radius Pl is more complicated than (1.2). These stresses 

a (t) can be represented in the form (1.2) only in the limiting case as Pl --* 0. The  stresses a ~  ) being specified, 

the stresses a(~ ) for 1 < i ~ i ~176 are determined from the relations 
7~ir i 

f a(yi)(xi,O)dxi = a(~ +1) (i = 1 ,2 , . . .  , i  ~176 - 1). (1.3) 
0 

The averaged stresses a~)  are used in criterion (1.1) for i = 1 and in the formulation of the boundary 
conditions of the elastic problem for the blunt crack in ttm next porous s t ructure  i -- 2. For i = 2, the 

(2), stressed state a.v (x2,0) is constructed [see a similar relation (1.2) for i = 2]. Problems for edge cracks are 
usually obtained for i :> 1, then the stresses are averaged according to relation (1.3) for i = 2, etc. [see 
criteria (1.1) and relations (1.2) and (1.3)]. After appropriate  transformations, we obtain the estimate of the 

-.(i)  critical SIF 1~] for a sharp normal-rupture crack 

K ; ( i ) / a ~  ) ~< [(cr!i)/a~i))(ki/ni) - 1](r I/2 (i -- 1, 2 , . . . ,  i~ (1.4) 

.(i) 
where a ~  is the critical value of a ~  ). A modification of estimate (1.4) for a bhmt crack is given below. 

We construct necessary criteria of brittle s t rength  for a medium that  has three structural levels i ~ = 3 
(Fig. 2). The  microscope principle is used, which allows one to study the behavior of the material in the 
vicinity of the crack tip in more detail. A porous solid body (i ~176 = 1) with an internal macrocrack that  has 
a microcrack at its tip is studied. Let an unbounded porous medium contain regularly located cylindricul 
cavities whose centers form a regular lattice with a square cell [8-10]. The internal macrocrack of length 

(~) 
2l,~k ~ appears due to the breakage of certain bonds in the porous body of regular structure (Fig. 2a). We 

assume that the body is loaded at infinity by the stresses a~).  The distance between the centers of the 
cylindrical cavities is denoted by rl  and the radius of tim cylindrical cavities by pl. Let the porous material 
have macrodamages in front of the macrocrack tip which are described by the parameters nl = 2 and kl -- 1, 
i.e., there is one force bond at this tip (Fig. 2a). Let  the material of the force lintels of the porous body 
consist of monocrystalline grains whose location is shown in Fig. 2b (r2 is the characteristic linear scale of the 
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grain). Let the first force lintel have a surface crack; then in another scale, we have an edge crack of length 

/(2) ~ for a grainy material of regular structure (microdamages of the grainy structure are described by the 
n 2 k .  

parameters n2 = 2 and k2 = 1). The procedure of determining a ~  ) is outlined above. Let the crack tip end 
in a monocrystalline grain of the material as shown in Fig. 2c. We consider the simplest crystal lattice which 
is oriented "properly" relative to the crack plane; r3 is the crystal lattice distance and the cross denotes a 
vacancy (n3 = 2 and k 3 = 1) .  In this case, we obtain again an edge crack of length I(3) =/(2) for a specified ~n3 k3 n2 k2 

loading a~). Obviously, rt >> r2 >> 7"3. 

W'e now give three consistent criteria: for a porous body with an internal crack (Fig. 2a), a grainy 
material with an edge crack (Fig. 2b), and a monocrystalline material with an edge crack (Fig. 2c). 

Below, we consider relations for the critical parameters of internal sharp, edge sharp, and internal 
blunt cracks, which are used to construct all the consistent necessary criteria. 

1.2. Internal Sharp Crack. We consider an internal crack of length ~ We recall that the SIF 

of this crack is K ?  -(i) ~ )  Substituting the critical SIF for this crack into relation (1.4), we obtain : O ~  V t{ ~ n i k i "  

the critical length 2/*(/) of the sharp internal normal-rupture crack ni ki 

"*(i) " (a(i)/a *(i) ni/ki)2k~/ni. (1.5) t n i k ~ / l ' i  -~- x m / ~ - -  

1.3. Edge  S h a r p  C r a c k .  We consider a half-plane with an edge crack of length l (/) subjected to the n~ki 

tensile stresses cr(~ ) applied perpendicularly to the crack. The SIF of this crack i s / t ' ?  = 1.1215o'(/) 

(see [17]). Substituting the critical SIF for this crack into relation (1.4), we obtain the critical length 1 *({) of n i k i  

the sharp edge normal-rupture crack 

2 . 5 2  = - ( z . 6 )  

1.4. I n t e r n a l  B l u n t  C r a c k .  We consider an internal blunt crack of length 91(i) "~ or, more precisely, 
a crack with the curvature radius Pi at the tip. The stress-strained state at the tip of a narrow notch is well 
known [17]. Note that  there is no stress singularity at the crack tip for a finite Pi. After some manipulations 

[5], we obtain the critical SIF of the notch K/(0,  which is expressed in terms of the SIF h'~ ~ for a sharp 
crack of the same length: 
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Ik'; (i) ---- Ik ' ;~ 1) 1/2. (1.7) 

It is obvious that  the limiting passage from the blunt to the sharp crack is possible as Pi -~  O. Using equality 
_(i) and the SIF of the sharp crack K ~ = v ~  V mn~k~' we obtain the critical length of the blunt crack (1.7) 

2,*(~) , = + (1.S) 

Expressions (1.7) and (1.8) for the critical parameters involve the nondimensional quanti ty p~/r~ that  char- 
acterizes the notch curvature. 

1.5. F r a c t u r e  C u r v e s .  L i m i t i n g  Pas sage  to  D e f e c t - F r e e  M a t e r i a l s .  We consider curves that  
describe the fracture according to the Neuber-Novozhilov criteria proposed [see the initial criterion (1.1) and 
implementations of this criterion in (1.5) and (1.6) for the corresponding types of cracks] and the classical 

,w*(i) I .  criterion where the lengths of internal cracks ~%k,/r i  are specified. 
We give relations that determine dimensionless critical loads for the blunt (structures have microdefects: 

ni > ki)  and the sharp (microdefects are absent: ni = ki) internal cracks: 

�9 __  , a ~  _ . ( 1 . 9 )  

In the first relation, the limiting passage from the blunt to the sharp crack is possible as Pi ---* O. For an 
arbitrary i, relations (1.9) can be regarded as equations that describe a unified fracture curve; moreover, the 

theoretical s trengths a!�88 ) and the characteristic linear dimensions ri of regular structures serve as units of 
measurenmnts for stresses and linear dimensions, respectively. To estimate the strength of materials with and 
without defects tha t  have sufficiently long bhmt cracks, one can use the approximate equalities 

/ 
O'~oi ) / o'~ ) ,(i) ~-- (ki/v/-~)~/ (ri/(21,~k,))(1 + p i / (2n i r i ) )  (1.10) 

relating the critical parameters. 
An increase in the critical length of the crack by two orders leads to a decrease in the critical load by 

one order with allowance for defects of the material and bluntness of the crack. 
Two types of defects are possible, namely, macrodefects and microdefects at each s tructural  level. The 

macrodefects are described by the crack dimension (for example, we have a set of parameters ri and 2/*(~) for niki 
an internal crack). The microdefects correspond to damages of the material in the vicinity of the crack tip 
and are described by the parameters ni and ki. Figure 3 shows five fracture curves: curves 1 and 2 describe, 
respectively, the fracture of defect-free materials (ni  = ki = 1) and materials with defects (hi  = 2 and ki = 1) 
that contain a sharp crack; curve 3 describes the fracture of defect-free materials (ni = ki = 1) with a narrow 

,~1.(i) /~ notch [p i / (2r i )  = 3 and ~ % ~ k J ' i  >1 lOpi / (2r i )] ;  curve 4 is the classical fracture curve, which has a singularity 
at zero [see the second relation of (1.9) where the unity is omit ted inside the brackets]; and dot ted  curve 5 is 
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a conventional curve tha t  describes the passage from the defect material to the defect-free material  for the 
growing crack. It is obvious that, according to the criteria proposed, materials with or without microdefects 
cannot  sustain stresses tha t  exceed the theoretical strengths of the corresponding structures. 

Thus, the effect of the smooth components of the solutions cr(~ ) in (1.2), the material microdefects in 

front of the crack tip k i /n i ,  and the crack bluntness pi/ri on the critical loads c ~  i) [see relations (1.5), (1.8), 
and (1.9)] is qualitatively estimated. We emphasize that, according to Novozhilov's terminology, curve 1 in 

Fig. 3 corresponds to the necessary strength criterion. It is noteworthy that ,  for the critical parameters  in 
._~ 1" ( i )  relations (1.4)-(1.6), (1.8), and (1.9), we can pass to the limit as K~ (i) 0 and ~ -+ 0 [in the classical 

relations like in (1.10), this passage is impossible]. 

2. C R I T I C A L  C R A C K  P A R A M E T E R S  E S T I M A T E D  

B Y  M U L T I S C A L E  C R I T E R I A  

We consider a body with a hierarchy of structures for which the characteristic linear dimensions and 

theoretical strengths are given by 

~(i+l)/~(i) - - - -  Bi (i 1,2, , i  0 1), (2.1) ri /r i+l  - ~  Ai,  ~m /urn = "'" -- 

where Ai = const >> 1 and Bi -- const >> 1 are constants, which, in general, differ by orders [see (1.10)]. As 

a rule, we have 

min r i = q o ,  rain a~)- -a! , [  ) ( i - -  1,2 . . . . .  i~ 

We consider an internal sharp crack of length ")l (i) and assume that  the defectness parameters of the material 
-- n i k i  

k i /n i  are known. The  minimum critical load rain a ~  i) that is observed for a certain structure i = i* can 
readily be determined from the approximate relations (1.10) for given Ai and Bi. If necessary, this load 
can be refined [see (1.9)]. Depending on geometrical and force parameters and parameters that  characterize 

,(i) 
the material defects, tile minimum critical load min aor corresponds to one or another structure.  Other 
conditions being equal, the crack resistance of a structured material increases as the linear dimension of the 
particular s t ructure ri is increased, since the relative dimension of the crack 2l(i~k~/ri decreases for its length 
fixed. The same result was obtained by the methods of similarity theory in [18] (the available experimental  
da ta  were also analyzed therein). Serious difficulties arise in manufacturing defect-free materials k i / n i  = 1 
or materials with a prescribed relative level of defects ki /n i  = const < 1 when the dimension ri increases. 

Let the load parameter  for a certain particular structure i = i* reach a critical value under continu- 
ously added loading. Then  unstable growth of ttle crack for this s t ructure occurs. Moreover, uncontrollable 
macrofracture begins if i* --- 1, and quasi-static growth of the crack occurs if i* > 1. In the case of uncon- 
trollable fracture, the body is split into fragments. When the crack extends in the structure i* > 1, either 
cessation of fracture of the structure i* > 1 or intensification of fracture of the structures i < i* is possible. 
The  fracture can stop when, for example, the crack tip meets a grain of an ideal monocrystal [the passage 
from the material with microdefects to the defect-free material (curve 5 in Fig. 3)]. The fracture is intensified 
when, for the quasi-static extension of tim i*th structure crack, criterion (1.1) holds for the i th s t ructure  such 
that  1 <~ i < i*. It  should be noted that,  for i* = 1, the passage to uncontrollable macrofracture is observed. 
The  most unfavorable case (catastrophic failure) occurs when the critical loads are exceeded simultaneously 

for two or more s tructures  among which there is the nmcrostructure i* = 1. 
Bearing the foregoing in mind, we consider the betmvior of sufficiently long cracks. The  necessary 

information on the critical parameters of internal cracks (see Sec. 1) is supplemented by the approximate 

equality for the edge sharp cracks [cf. (1.10)] 

We assume that  there is only one bond at the crack tip in each structure, and the relative linear dimensions 

and material defects for each s tructure have the form 
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rl/r2 = A1 = O(104), r2/r3 = A2 = O(102), nl = n2 = n3 = 2, kl = k2 = k3 = 1, (2.3) 

where 2ri are the intervals of averaging (i = 1, 2, and 3) and r3 is the lattice distance. It is also assumed that  

theoretical  strengths for each s t ructure  differ by orders [cr(m 3) is the ideal strength of a monocrystalline body]: 

~176 / m = B1 = O(102), O'(3)/O "(2)rn , m = B2 = O(10), (2.4) 

which corresponds to the case where the strength of the structural material in the macrostructure differs 
from the ideal strength of a crystalline body by three orders. Taking relations (1.10) and (2.2) and equalities 
(2.3) and (2.4) into account, we infer that,  for sufficiently long cracks, the minimum critical load is reached 
in one of the structures i = 1, 2, and 3 depending on the geometrical and force parameters and parameters 
characterizing the material defectness. 

We dwell in greater detail on the choice of the quant i ty  a(l~ ) that characterizes the theoretical strength of 
the bond in a porous body. When it is necessary to perform particular calculations and compare experimental 
results with theoretical concepts [9, 10], one should choose the upper limit of the strength of the specimen- 
witness [9, 10] obtained in a full-scale experiment as the theoretical s t r e n ~ h  of this bond. We emphasize 
that  experiments on smooth specimens gave greater scat ter  than those on specimens-witnesses. In fact, 
microdamages of the pore surfaces were modeled on the specimens-witnesses; as a result, the macrostructures 
failed earlier than the structures with ideal-surface pores did. 

R e m a r k .  In criterion (1.1) it is assumed that ,  for a material with damages, the fracture begins at 
the crack tip rather than at the microdamage tips. A more detailed estimate of the failure pat tern due to 
interaction between sharp cracks and various holes (blunt cracks) can be found in [19, 20]. 

3. I N I T I A T I O N  O F  M I C R O V O I D S  IN  F R O N T  O F  T H E  C R A C K  T I P  
F O R  L O W - A N G L E  B O U N D A R I E S  

The  multiscale criteria for b r i t t l e  strength proposed above are free of restrictions of the classical 
approach and make it possible to describe the initiation of satellite microcracks: " . . .  crack growth in ductile 
materials can occur by both continuous tearing and by void formation ahead of the advancing crack tip" 
[21, p. 409]; "there is growing evidence that,  in multiphase polycrystalline materials, the stress concentration 
caused by second-phase particles or by grain boundaries causes microvoids to form, which eventually coalesce 
into macrovoids" [21, p. 411]. 

To describe the initiation of microvoids in front of a crack in a material with defects, we modi.fy 
criterion (1.1). Further, we consider the formation of microvoids in a continuous solid at the continuation 
of the normal-rupture macrocrack (see [21, Figs. 13 and 15]). Let the right tip of the internal macrocrack 
of length 2l stop at a defect-free monocrystal (its x-length is niorio, where rio is the lattice distance, the 
subscript i ~ = 2 is assigned to the crystalline structure;  for example, we have r2 = re = 2.9 ~t for a- and 
/~-iron and r2 = re = 3.6/~ for ~,-iron). Moreover, let the low-angle boundary of the other two monocrystals 
be located at the right continuation of the crack [the subscript i = 1 is assigned to the structure with the 
low-angle boundary, and the low angle characterizes the disorientation of these monocrystals (see Fig. 2b 

and c)]. We assume that,  for a specified load ~ ) ,  the crack length 2l is critical neither for i = 1 nor for 
i ~ = 2 [see criteria (1.1)]. 

We model a regular low-angle boundary of two monocrystals  by clusters composed of vacancies. It is 
assumed that  the two monocrystals come into contact  along a certain straight line, on which the vacancies are 
located regularly. The number of vacancies is nt  - kl, where kl = O(1) is the number of working interatomic 
bonds between the upper and lower monocrystals that  form the low-angle boundary (for example, kl = 1, 2, 
and 3) and nlr l  is the recurrence interval of the regular structure, nl >> 1 (for example, nl = 10 and 20). 
For definiteness, we assume that  the structure i = 1 originates in the cluster from nl - kl vacancies followed 
by kl a toms that  ensure interatomic interaction of crystalline structures of the two monocrystals. 
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A sharp crack is modelled by a two-sided notch; the condition for formation of the first microvoid on 
the right continuation of the crack for a certain particular s tructure i = i* (for low-angle boundaries, we have 
i * = i  ~  has the form 

n(2)r  

i f max ~ (7~(x, 0) dx = (3.1) 

n(1)r  

Here (Ty = a( i*) (x i  �9 , 0) are the normal stresses at the crack continuation [they can have a singularity only at 
the crack tip for the i~ structure and do not have one for the (i ~ - 1)th structure], Oi*xi*yi* is the Cartesian 
coordinate system oriented relative to the right part of ttm crack, r = ri* is the characteristic linear dimension 
of the i*th structure, in (3.1) and below the symbol i* is omitted,  n(2)r and n(1)r are the upper and lower 
limits of integration, n(:) > 0, k is the number of active bonds acting in tile averaging interval (n(:)r, n(2)r) 

such that  n (2) - n (1) ~) k, and (7~) is the theoretical strength of the material. 
In the continual model, the stressed state in the vicinity of the crack tip has an integrable singularity 

[see (1.2)] and the SIF of the internal crack is related to its half-length and the load specified at infinity (7cr 
by KI  = (7oov/~. Substitution of the above-mentioned relations into the integrand in (3.1) and necessary 
manipulations yield the formula 

[ C = max + : 

which describes the initiation of the first microvoid and relates the critical load (7~ and the macrocrack length 
2/* [cf. (1.9)]. The critical load (7~ satisfies the following restrictions [criterion (3.1) is fulfilled first rather 
than criteria (1.1)]: 

�9 - (1) (7 . (1) /O.(1)  * - (1) (7*(2)/0.(2)  
( T o o / ( T m  ~" oo / m ,  ( T o o ~ G i n  "~ oo i m "  

Here a ~  2) and a ~  l) are tile critical loads of the monocrystal and polycrystal with a low-angle boundary, 
respectively, where the critical length of the internal crack is 2/* = 2/*(1) = 2/*(2) [see (1.9)]. In the last 

(7. , (1) inequalities, the critical parameters are compared again. If the critical parameter 0o/(7m becomes equal to 

at least one of the critical parameters a ~  1)/(7~) and (7~2)/a(m2), catastrophic failure occurs. 
In the case of low-angle boundaries, the left side of relation (3.1) reaches its maximum when 

n (1) -= n 2 ,  n (2) = n 2  + 2 n l  - -  k l ,  k = k l ,  

and hence, the length of the new void formed is L = (2n: - k l ) r : .  One can easily verify that all restrictions 
are fulfilled, for example, for kl = 1, nl  = 21, and n = 4, i.e., for sufficiently weak low-angle boundaries. 

The discrete-integral criteria (1.1) and (3.1) are hybrid criteria since they are based on both discrete 
and continual approactms: the stress-strain state near the crack tip is determined with the use of the continual 
model of mechanics of continuous media, whereas the loss of stability of an atomic lattice with defects for a 
specified load is determined using the discrete approach in accordance with models of the physics of solids. 

In a defect-free material, criteria (1.1) are satisfied first, then criterion (3.1) is fulfilled. In the presence 
of significant defects at the crack continuation, criterion (3.1) can be fulfilled first, then the stress-strained 
state alters because of the formation of microvoids. Thus, only after the effect of the structure in the vicinity 
of the crack tip on fracture is taken into account does it become possible to explain why, under certain 
conditions, the failure occurs not at the crack tip, but at a certain distance from it (the problem, in principle, 
cannot be solved within the framework of the continual model of the theory of elasticity since, in view of the 
singularity at the crack tip predicted by the continual model, whichever criterion is used, tile failure must 
begin precisely at this tip) [22, p. 56]. 

After the formation of the first microvoid, the following events are possible: 1) appearance of a second 
microvoid; 2) propagation of the main crack (uncontrollable failure); 3) expansion of the first microvoid- 
crack (see [23, Fig. 77]). In the first case, an analog of criterion (3.1) is used and in the second and third 
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cases, analogs of criteria (1.1) are used. To describe the quasi-brittle process of initiation of microvoids, 
their growth, and propagation of the main crack, criteria (3.1) and (1.1) become somewhat complicated 
since in the integrands it is necessary to use normal stresses at the crack continuation with allowance for the 
microvoids-cracks already formed [19, 20]. The development of the microvoids, in general, cannot be described 
by quasi-brittle (necessary) criteria of the type (1.1) and (3.1) since "the plastic deformation involved in void 
coalescence is often on such a fine scale as to escape macroscopic level, but is locally of a high degree of 
deformation, comparable to hundreds or thousands of percent in a tensile test" [23]. A complete description 
of the microvoids will be possible after multiscale sufficient criteria of strength are constructed. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01- 
00692). 
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